
 IJSRSET15132 | Received: 24 April 2015 | Accepted: 28 April 2015 | May-June 2015 [(1)3: 1-14]

© 2015 IJSRSET | Volume 1 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

1

NURIKABI SOLVER

Deepika Dasari Soorasamharan, Pranamita Nanda

Velammal Institute of Technology, Panchetti, Tiruvallur District, Tamilnadu, India

ABSTRACT

Nurikabe is logical puzzle game. Nurikabe puzzle normally has „m‟ number of rows and „n‟ number of columns.

Even though it is a logical puzzle game, one cannot solve all the puzzles with pure set of logics. Because Nurikabe

puzzle is a NP-complete game. Hence some assumptions must be made in order to solve the given puzzle. In this

project in order to make this kind of assumptions with set of logics, SAT solver is used. SAT solver is an efficient

tool to make the decisions with binary logics. SAT solver will accept only CNF format. So the puzzle rules and

solving logics are converted into CNF format and given to SAT solver. Results from the SAT solver are checked

with the rules and if the result satisfies the rules, then it is determined that the result as an appropriate solution for

the given puzzle. And new Nurikabe puzzles also generated within certain limit in this project. SAT solver is used to

generate new puzzles in this project.

Keywords: NP-complete, Conjunctive Normal Form, T Veerarajan, Nurikabe puzzles

I. INTRODUCTION

Nurikabe is a binary determination puzzle game,

published by Nikoli. Nurikabe consists of M*N grid that

is it has m number of rows and n number of columns.

Nurikabe is a Japanese word which means that invisible

wall that delays the path. Users have to follow set of

rules to find the hidden wall. To solve the puzzles

automatically, SAT solver tool will be used. Sample

Nurikabe games are available online [1].

More logics and strategies have to be followed in order

to computerize the puzzle game. The rules to play the

Nurikabe puzzle is described as follows,

 Cells are considered to be connected only if it is

connected either vertically or horizontally.

 Each numbered white cells should have the

same number of white cells around it.

 All the black cells should be connected and the

grid should not have any 2x2 black pools.

A. Motivation

Puzzle games are getting more popular day by day.

While implementing the puzzle game in software it

requires more logics and strategies to obtain the solution

and it can be helpful to increase the ability to create new

logics for any given problem. SAT solver is a tool which

is popular in solving satisfiability problems [3]. SAT

solver tools are open-source, available under free license

and it has vast implementations. SAT solver is a

powerful tool in decision making, software verification

and it is used in artificial intelligence. Instances for SAT

solvers are miniSAT, SAT4j, GRASP, PicoSAT,

HyperSAT, RSAT and so on. SAT solvers are available

for C, C++, JAVA, C# platforms and all SAT solvers are

available online for free downloads [2]. And it can be

implemented with Formal Languages such as Z-

Language. SAT solvers are flexible and it can be

modified.

B. Aim

The aim of the project is to computerize the Nurikabe

puzzle and to implement the automatic solving

functionality and to implement the generating new

puzzles functionality.

C. Objective

The objective of the project is to create a tool to solve

Nurikabe puzzle which is played in M*NM*N grid. By

following the rules, M*Nm*n matrix cells has to be

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

2

filled with black and white colours according to the

given numbers in the puzzle game. White cells are

known as path or Islands and connected black cells are

known as walls or streams. Initially wall is invisible and

after solving the puzzle with the rules, connected wall

will be revealed. Puzzle matrix will be converted into

SAT instances and it will be given to the SAT solver.

SAT solver will solve SAT instances with the help of

puzzle logics given to it. And outcome of the SAT

solver will be displayed as a result. Firstly Graphical

User Interface (GUI) has to be created to display the

puzzle as well as to play the puzzle. Secondly puzzle

logic for Nurikabe puzzle game should be created and it

should be implemented with the SAT solver. Thirdly,

checking for the user input and verifying the solution

given by the user has to be done and finally solving the

entire puzzle automatically and showing the result to the

user with the help of Graphical user interface.

Figure 1 : Unsolved Nurikabe Puzzle

Figure 2 : Solved Nurikabe Puzzle

D. Literature Review

1. Ines Lynce, Joel Ouaknine Sudoku as a SAT

Problem

This paper holds the vital clue for how the puzzle logic

can be converted to the propositional logic. Also we can

understand how the CNF (Conjunctive Normal Form)

can be generated out of the propositional logics and

encoding techniques for the SAT solver.

2. Daniel Le Berre: From SAT to SAT4J

This paper describes the uses of SAT solvers and its

advantages and which format of the input is needed for

SAT4J. It describes about how to derive the CNF from

the Propositional formula. And it tells how the SAT4J

can be integrated with the Java platform. From this

paper we can understand efficiency of the SAT solver.

This paper is used to understand about the basics of SAT

solvers and CNF formats.

3. T Veerarajan: Discrete mathematics (Chapter 1:

Mathematical logic)

First chapter of this book is used to understand the

Normal forms and its principals, conversion of one form

to the other (DNF to CNF), Laws of Algebra of

propositions which includes De-Morgan‟s Law. And it

provides many examples for all those things mentioned

above.

II. METHODS AND MATERIAL

1. Technical specification

The Nurikabe solver is developed with:

 NetBeans IDE 7.0

 JAVA - jdk 1.6

 SAT solver – SAT4J

A. NetBeans IDE 7.0

NetBeans is an open source IDE which will support

many languages like java, C, C++, PHP and so on. In

this project java swing technologies are used which can

support JButton, JFrame, JMenu, JMenuBar etc. More

than that Java swing is very simple to implement

compared to the Java applets. But NetBeans IDE needs

Java Development Kit to run the java projects. For this

project JDK 1.6 is used. Both NetBeans and JDK is

available for free of cost.

B. Project Analysis and Design

Graphical User Interface is designed to show the

Nurikabe puzzle to the user. Clear understanding of the

Nurikabe puzzle rules aided the Graphical User Interface

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

3

design in a significant manner. GUI is developed using

the Net Beans IDE 7.0, jdk 1.6 and SAT4j library.

SAT4j has many kinds of library files. In this project,

core library file of the SAT4j is used. This core library

file is easy to implement any we can easily work with its

functionalities. All kind of implementation methods are

available in the SAT4j documentation [8]. Predefined

puzzle questions are stored in separate text file. Inside

that text file every data is given such as the row size and

column size and followed by the numbers to display in

the grid. To represent the empty cell in any coordinate in

the puzzle grid we should enter the number „0‟ in the

appropriate coordinate of the question text-file. Example

for this text file is shown in the following diagram,

Figure 3 : Text file which shows format of the puzzle

question

While loading the new game, number of rows and

number of columns will be obtained to define the size of

the grid and to define the number of rows and columns

in the grid. All the functionalities such as “Open new

game”, “Check”, “Solve”, “Generate new game” and

“Exit” are added to the “Options” menu and “Rules”

functionality is added to the “Help” menu.

The functionality “Open new game” will go to the “List

of games” folder as per the address given to it. After

locating the “List of games” folder, this functionality

will start to count the number of files available inside

that folder. That number of files is used as a maximum

limit. If user clicks the “Open new game” functionality

for the first time then first file inside the “List of games”

folder will be selected first. If the user clicks the “Open

new game” functionality for the n
th
 time, then n

th
 file in

the “List of games” folder will be selected. If number of

clicks exceeds the maximum limit of the count of

number of files available inside that “List of games”

folder, then the number of clicks is assigned to zero. So

when the number of clicks exceeds the maximum limit

of the number of files available, then first file from that

“List of games” folder will be selected next. This

functionality will count the number of files available in

the “List of games” folder each time the user clicks this

functionality. So it is possible to introduce the new game

file during the run time of this project. If any of the

game file is not having sufficient numbers or not created

in the specific format, then it will not load the game and

it will show the message box to the user, which holds the

message like “Sorry..!! Could not load this game”. The

image showing this message box is given below,

Figure 4 : Message box showing the inconvenience in

loading the game

If the selected file is in the correct format then the

selected game will be displayed in the main window

grid. Initially all the cells in the grid will be grey in

colour except the numbered cells.

All the numbered cells will be white in colour. Grey

coloured cells are unknown cells. If the grey cell is

clicked once it will change its colour to white. If the

white cells are clicked once, then it will change to black

in colour and if any black cell is clicked then it will

change to white in colour. Any colour change will not

happen to the numbered cells and it will be white in

colour for ever. The “open new game” functionality is

displayed in the image below.

Figure 5: GUI showing the sub menus of the “Options”

menu

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

4

Figure 6 : Sample Nurikabe Puzzle game

The “Check” functionality will check for the correctness

of the user solution. In this check functionality four

check points are implemented. First check point will

check for the number of black cells and white cells. If

we subtract the sum of the numbers from all the

numbered white cells from the total number of cells then

we can find the number of actual black cells.

Number of Actual black cells = Total number of cells –

Sum of numbers in numbered white cells.

If the count of black cells is same as the actual black

cells which we got from the above formula then first

check point will return true. If not then it will return

false.

Second check point will look for the 2x2 black pools in

the grid area. In the M*N grid it is enough to run the

loop till (m-1)x(n-1). Because if we start form the first

cell which has the coordinate of (m=1, n=1), then this

check point will look for its neighbours colour which are

having the coordinates (m=1, n=2), (m=2, n=1) and

(m=2, n=2). By the moment the loop reaches the

coordinate (m-1, n-1), this check point would have

processed all the cells in the grid. If there are no 2x2

black pools formed then the second check point will

return true. If not it will return false.

Third check point is developed to check for the

continuity of the black cells and it will find the isolated

black cells also. For the convenient the solution

provided by the user will be converted to the matrix

form which will have only 0s and 1s. 0s will represent

the white cells and 1s will represent the black cells. To

find the continuity of the black cells DFS (Depth first

search) algorithm is used. DFS is very efficient in

finding the depth of the given tree. And DFS is very

efficient in finding the path in Maze puzzle games

[5][10]. This Depth first algorithm is configured to

traverse along the black cells and to count the number of

black cells that are present in its way. And also it is

configured to look for the isolated black cells in the grid.

To traverse along the black cells recursive form of the

DFS is used. So it will call itself again and again till it

reaches the end. This third check point will return true if

it is not finding any isolated black cells and the counting

of the black cells is same as the actual black cells.

Otherwise it will return false. Actual number of black

cells is the difference between the total size of the grid

to the counting of the all the numbers in the numbered

cells available in the grid.

Coordinates to the algorithm is the first occurrence of

the black cell in the whole grid. All the cells inside grid

are converted into 0s and 1s and it is stored in the array.

Number 0 represents white cells and Number 1

represents black cells in the grid. This algorithm can be

explained with the following images,

Figure 7 : Sample Nurikabe Puzzle game with partial

solution

First the above grid is converted to the matrix form as

mentioned above. The matrix for the above grid is

shown below.

1 1 0

1 0 1

0 1 1

0 0 1

The first occurrence of the black cell is on the first cell

which has the coordinate (m=1, n=1). This stored matrix

and the first black cell coordinate are given to the

recursive DFS. This recursive DFS will check for the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

5

coordinates firstly in the segment 1. The coordinates are

safe to process, because they are inside the matrix. And

it will check for the acknowledgements whether this is

processed before or not in the segment 2. In this case it

was not acknowledged before. So it will go to the next

step of the process which is segment 3. Segment 3 is to

check whether the count of the number of black cells

reached the number of actual black cells or not. In this

case it has not reached yet. So it will go to the next step

which is segment 4. Here it will check whether the cell

which is in process, is black or not. If it is black then it

will allow going to the next step. If not, then it will

return false to the function. In this case it is a black cell,

so it will not return false and it will go to the next step.

In the segment 5, if the current coordinates has black

cell then it will acknowledge that the current cell is

processed and it will increase its variable named

„pathcount‟ by 1 and it will check for its neighbours.

Here the function is called with the same set of matrix

with the neighbour coordinates. In this example only

two cells are connected to the cell with the (m=1, n=1).

So the „pathcount‟ value will be 3. Because, other black

cells have no connection either vertically or horizontally

with the first black cell. If any of the black cells has no

neighbour, then it will be marked as the isolated cell. In

this example, expected number of connected black cells

(path-count) is 8 which is the count of the actual black

cells. But only 3 connected black cells are found from

the first cell. So it does not satisfy the rules. Hence

check3 will be assigned as false in this example. If we

consider the following diagram,

Figure 8 : Sample Nurikabe Puzzle game with full

solution

This example diagram satisfies the check point 3.

Because in the above example, number of cells is 12.

And the actual number of black cells is 8 and the count

of the current black cells is also 8. So this check point 3

will return true in this case.

Fourth check point is developed to check for the number

of white cells connected to the numbered white cells.

This fourth check point is also based on DFS algorithm

[5][10]. DFS algorithm is configured to find the

numbered white cells and the connected white cells to it.

It is configured to traverse only along the white cells.

This check point will return true if the numbered white

cells in the grid has the same number of white cells

around it. If it detects any numbered white cells that

have more number of white cells around it or less

number of white cells around it, then it will return false.

If all these four check points returns true then the

solution is correct and it has no error in it. And it will

show the confirmation message of the correctness. If any

of the checkpoint fails and returns false then it will show

the failure notification in the message dialogue and the

message dialogue is shown below.

Figure 9 : Nurikabe Puzzle which is designed not to

obey the rules

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

6

Figure 10 : Message dialogue which shows failure

notification of the given puzzle

To check the accuracy of the solutions during each

iteration, DFS algorithm is used. Here also DFS is

modified in two ways as same as the checking

functionality. One is to find the number of connected

black cells and the other DFS is modified to look for the

number of white cells around the numbered white cells.

To increase the efficiency of the checking process some

tactics are followed. When the SAT solver returns the

“satisfiable” answer, accuracy of that solution has to be

checked. Before doing the checking for the number of

connected white cells with modified-DFS algorithm,

accuracy in the actual number of white cells with the

current number of white is checked. To do this process,

while extracting the answer given by the SAT solver to

do the appending operation, number of white cells

available in that solution is calculated. If the calculated

number of white cells is same as the sum of numbered

cells available in the grid, then it will allow the solution

for the further checking. If not it will not go further and

it give the inverted solution to append to get the next

possible solution. If the actual number of white cells is

same as the current number of white cells, then the

checking for the number of connected black cells will be

done. If checking for those black cells returns false at

any moment, then it will terminate the current process

and the current solution will be inverted and appended to

the CNF file. If it returns true, then the checking for the

number of white cells around the numbered white cells

will be done. If any of the numbered cells has low or

high number of white cells around it compared to the

number inside the numbered cell, then it will return false

and it will allow the inverting and appending process of

the current solution to the CNF file. If all of the above

checking returns true, then the current possible solution

is the exact solution which obeys all of the Nurikabe

rules. And it will show the message dialogue which has

the message like “Congratulations..!! You have finished

the game..!!”. The diagram showing this message

dialogue is as follows.

The functionality called “Generate New Game” is used

to generate new games which are of 5x5 in size. To

generate the new game, one important rule is taken

firstly. That is no 2x2 pool formation inside the grid.

This rule to avoid the 2x2 pool inside the grid is written

inside the CNF file named “gen.cnf”. After that whole

“gen.cnf” file will be replaced to the “generate.cnf” file

in correct format. Random number is generated within

the limit. Many methods are available to generate the

random numbers within the limit [11]. In this project,

random number is generated which is within the range

from 1 to 100. Till that generated number loop will run

and inside that “generate.cnf” will be red and its solution

will be updated to the “gen.cnf” and this process will

continue till the loop reaches the generated number.

After this process all the black cells inside the grid will

be converted into number 1 and white cells inside it will

be converted into number 0 and it will be stored in the

matrix. This stored matrix and the coordinated of the

first black cells in the grid is given to the modified-DFS

algorithm named „pathtracking_gen‟. This

„pathtracking_gen‟ algorithm will traverse through the

matrix as long as the first occurrence of the black cell in

the matrix has neighbours either vertically or

horizontally and number of continuous black cells will

be stored. Here the actual number of black cell is the

total number of black cells available inside the matrix. If

the number of actual black cells is same as the number

of continuous black cells inside the matrix, then

condition is satisfied. So from this algorithm we can get

whether all black cells in the matrix are continuous or

not. If this algorithm returns true, that is if the number of

black cells in the matrix are continuous, then number of

connected white cells in the matrix will be calculated.

To find the number of continuous white cells, stored

matrix which is mentioned above and first occurrence of

the white cell coordinates are given to the modified-DFS

algorithm named as „check_boundedness_gen‟ which is

specifically designed to traverse through the white cells.

While traversing along the continuous white cells in the

matrix, this algorithm will mark those continuous white

cells as processed. At the end of the process, number of

continuous white cells with the first occurrence of the

number 0 in the „matrix‟, is stored in the „A-matrix‟ in

the first occurrence of the number 0 position of the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

7

„matrix‟. This can be explained with the following

example.

„martix‟

0 0 0 0 1

1 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 1 1 1 0

In this example „pathtracking_gen‟ will return true.

Because number of black cells in the above matrix is 15.

And number of continuous black cells in the region also

15. So it will return true value. So it will go for the

„check_boundedness_gen‟ algorithm as a next step.

Here first occurrence of the white cell (Number 0) is in

the coordinates (m=1,n=1). After calling

„check_boundedness_gen‟ algorithm we will get the „A-

matrix‟ as follows,

„A-matrix‟ 4 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

And the „check_boundedness_gen‟ algorithm will start

from the second occurrence of the „matrix‟ which has

the coordinates (m=1, n=2). But the count of the white

cells will be 0 this time. Because this second occurrence

of white cell with coordinates (m=1. n=2) is already

processed. So the number of continuous white cells will

be 0. After the completion of this

„check_boundedness_gen‟ for the entire matrix, we will

get the „A-matrix‟ as follows,

„A-matrix‟ 4 0 0 0

0 0 0 0 0 0 0 5 0 0

0 0 0 0 0 0 0 0 0 0

1

This „A-matrix‟ is used to display the questions in the

grid. And the „matrix‟ will be used to check for the

user‟s solution as well as to display the correct solution,

when the user is calling „solve‟ function.

On the 1
st
 iteration: 65 On the

2
st
 iteration: 95 On the 3

st

iteration: 77 On the 4
st

iteration: 35 On the 5
st

iteration: 42 On the 6
st

iteration: 78

Figure 11: New puzzle generated by the “Generate

New Puzzle” functionality

In this example, the first 5 random numbers are failed to

provide the continuous black cells without any isolated

black cells. And in the 6
th
 iteration the random number

78 is generated and it has provided the continuous black

cells.

The functionality called “exit” is to close the Nurikabe

puzzle game tool.

And the help functionality is implemented to display the

message box which will display the set of rules to be

followed in order to play the Nurikabe puzzle game.

This message box is showed in the following picture.

Figure 12: Message dialogue shows the rules

III. RESULTS AND DISCUSSION

Project Development

A. Logic formula

Propositional logic formula for Nurikabe solver can be

derived by combining the expressions like Conjunction,

Disjunction, negation, and, equals. After finding the

complete set of logics to solve the puzzle, we have to

convert those logics into the propositional logic formula.

A set of SAT instances which is built from the

propositional logic has to be given as the input to the

SAT solver. Then the SAT solver will determine

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

8

whether the given problem is satisfiable or not.

For the formation of propositional logic formula, the

following symbols will be used commonly.

→ Then

⌐ Negation

AND (or) Conjunction

 OR (or) Disjunction

↔ Same as

Deep understanding of the game has provided many

clues to solve the given game with SAT solver. SAT

solver will accept only Boolean forms. So eventually we

are converting entire game and its solving steps into the

Boolean format which consists of only true and false.

Nurikabe has only Black and White cells in its solution

and those white and black cells have to be filled with

logic. Some assumptions are made to solve the game.

The first assumption is TRUE indicates white cell and

FALSE indicates black cell. And the Second assumption

is if the cell has number in it then that cell must be

white.

Sample logic formula is given below,

S (m, n)=1 → S(m-1, n)=false _ S(m+1, n)=false _ S(m,

n+1)=false _ S(m, n-1) =false

This formula represents the simple solving logic in the

Nurikabe puzzle game. It means that if the cell which

has the coordinates of row=4 and column=4 has the

number 1 and it is white in colour, then the cells around

it with coordinates (3,4), (5,4), (4,5) and (4,3) will be

converted into black. The formula given above is in

DNF (Disjunctive normal form) format. SAT solver will

accept only CNF format. So the formula can be written

as follows,

S(m, n)=1 → S(m-1, n)=false

S(m, n)=1 → S(m+1, n)=false

S(m, n)=1 → S(m, n+1)=false

S(m, n)=1 → S(m, n-1) =false

If number 2 is found in any cell in the game then the

logic to solve that will be as follows,

S(m, n)=2 → S(m, n)=true _ (S(m-1, n)=true

S(m+1, n)= true _ S(m, n+1)= true _ S(m, n-1) = true)

This formula describes that if the number 2 is found

in the 2
nd

 row of the 2
nd

 column then that cell must be

true and any one of the cells around it (1
st
 row of the

2
nd

 column OR 3
rd

 row of the 2
nd

 column OR 2
nd

 row

of the 1
st
 column OR 2

nd
row of the 3

rd
 column) must

be true. So in the CNF format it can be written as

follows,

S22=2 → S22=true

S22=2 → S12=true _ S32=true _ S21=true _

S23=true

This S22=2 → S12=true _ S32=true _ S21=true _

S23=true condition will give at-least 1 true variable at

a time. So it means that it can give more than 1 true

variable at a time. Other combinations except 1 true

variable at a time are as follows,

Total Number of Number of

number of True combinations

variables variables at available

(X)

a time

(C =X! / (X-

 (T) T)! T!)

4 2 6

4 3 4

4 4 1

So total remaining combinations are (6+4+1) = 11

These combinations are unnecessary and it increases

the number of iteration to find the exact solution. So

we have to avoid those combinations. To avoid those

combinations, only way is to get those combinations

and if we invert those combinations and if we append

it to the CNF file, we can get the results, which are all

having only 1 true variables at a time. So the resulting

combination will be only 4 combinations in which

only one true variable available at time.

If we consider the following condition, B _

C _ D

It clearly states that at least one of B or C or D must

be true if the condition is satisfied. We can

understand this concept by the following truth table

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

9

where T= True and F= False,

B C D B _ Satisfiability

 C _

 D

T T T T Satisfied

T T F T Satisfied

T F T T Satisfied

T F F T Satisfied

F T T T Satisfied

F T F T Satisfied

F F T T Satisfied

F F F F Unsatisfied

If we consider three variables B, C and D with the

following combination,

(B _ C) _ (C _ D) _ (B _ D)

It will give at least 2 true variables at a time. In the

above combination 1 variable is skipped at a time. In

order to attain at least 2 true variables at a time from

three variables, three different combinations are needed

with 1 variable skipped in each combination.

If we consider „X‟ variables with 2 variables skipped at

a time in its combination, then it will give at least 3

true variables at a time.

If we consider „X‟ number of variables with „S‟ number

of variables skipped at a time then the combination will

give at least „S+1‟ true variables at a time.

The following table describes the relationship between

skipped number of variables and minimum number of

true variables.

Number Skipped Minimu Maximu

of number m m

Variable of number number

s variable of true of true

(X)

s values values

 (S) (Min = (Max = X

 S+1))

10 1 2 10

10 2 3 10

10 3 4 10

10 4 5 10

10 5 6 10

If number 3 is found in the coordinate (m, n) then the

possible region cells will be,

S(m-1, n), S(m-2, n), S(m+1, n), S(m+2, n), S(m, n+1),

S(m, n+2), S(m, n-2), S(m, n-1), S(m+1, n-1), S(m-1,

n+1), S(m-1, n-1), S(m+1, n+1)

We know that numbered cell must be white. To

complete its region, 2 more cells are needed. So we

have to skip 1 variable at a time in its possible region

cells to obtain the correct combination.

Therefore if the number „N‟ is found in the Nurikabe

grid then, N-1 cells around it must be true and those

cells must be connected either horizontally or

vertically. The number of variables to skip will be N-2

for the formation of its possible region. The following

table describes the relationship between the number

and the number of variables to skip per iteration and

the number of true cells.

Number in the
numbered

white cell (N)

Number of
connected true

cells to the
Numbered cell

(N-1)

Number of
variables toskip

periteration(N-2)

3 2 1

4 3 2

5 4 3

6 5 4

From the complete understanding of the game, it is

possible to determine the possible region of cells. After

finding all the set of cells from the possible region, it

will be simple to determine the cells from the

impossible region. To understand this concept the

following diagram can be used.

Figure 13: Showing the Possible region of the

numbered cell

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

10

In the above diagram, green coloured cells are the

possible region cells for the cell with number 4.

Generally the maximum number of possible region

cells for any numbered cells will differ from „N-1‟ to

„N
2
 + (N-1)

2
 – 1‟ where N is the number in the

numbered cell. Examples for this can be seen in the

following table,

Number
(N)

Minimum no. of
possible region
cells (N-1)

Maximum no. of
possible region cells
(N2 + (N-1)2 – 1)

2 1 4

3 2 12

4 3 24

5 4 40

6 5 60

An algorithm is developed to determine the possible

region cells for the numbered cells. That algorithm is

shown below, after finding all the possible region cells,

there is a need to create all the possible combinations

with the appropriate number of variables skipped. To

create the combination of the possible area cells, the

following algorithm is developed.

Deep understanding and analysis of the relationship

between number of variables and the number of

variables to be skipped reveals some structures. This

analysis is explained with the help of following table,

Number of

possible cells for

any numbered

cell (X)

Number of

variables to

skip per

iteration (S)

Number of
combinations
achieved (C =X! /
(X-S)! S!)

6 1 6

6 2 15

6 3 20

6 4 15

6 5 6

In the above table X! is known as Factorial of X. For

example if X = 5 and S = 2, then the total number of

possible combinations will be,

C = (5! / (5 - 2)! 2!) = (5*4*3*2*1) /

(3*2*1)*(2*1) = 10

So in this example total combinations will be 10.

For every numbered cell, its entire possible region is

collected and inverted and given to the SAT solver to

avoid the all-true condition. Because the formulas and

combinations will give at-least conditions only. Example

explained with the possible area cells of number 3 is as

follows,

S(m-1, n) _-S(m-2, n) _- S(m+1, n) _- S(m+2, n) _-

S(m, n+1) _- S(m, n+2) _- S(m, n-2) _- S(m, n-1) _-

S(m+1, n-1)- S(m-1, n+1) _- S(m-1, n-1) _- S(m+1,

n+1)

At the same time rules also have to be implemented to

attain a solution for the given game. It is very hard to

implement the rules like boundedness of the numbered

white cells and the continuity of the black cells. But it is

simple to implement the rule like 2x2 pools is easy in

the CNF. Propositional logic to avoid the 2x2 pool of

black cells will be as follows,

S(m, n) _ S(m+1, n) _ S(m, n+1) _ S(m+1, n+1)

The above formula clearly states that at least one of the

cells in the four cells must be true. But with this

propositional formula number of solutions made by the

SAT solver will be very high. From that list of solutions

we can find the unique answer for the given game. It is

not efficient and it will take more time to get the proper

solution from the list of solutions. So we tend to create

some more propositional tactics to minimize the list of

solutions as well as to reduce the time to search for an

appropriate solution from the list.

In the Nurikabe matrix if we find any numbered cell

then it must be white. So we can convert this logic into

propositional logic as follows,

S(m, n) ≥ 1 → S(m, n) =true

And In the Nurikabe matrix if we find any numbered

cells that have more than number 2 in it, then one of the

cells around it either horizontally or vertically will

definitely be true. So the propositional logic for that will

be as follows,

S(m, n) ≥ 3 → S(m-1, n)=true _ S(m+1, n)= true _

S(m, n+1)= true _ S (m, n-1) = true

This propositional logic is similar to the propositional

logic for the number 2.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

11

In the Nurikabe grid if we find any two numbered cells

that are diagonally adjacent, then the propositional

formula will be as follows,

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 → S(m+1, n)=false _

S(m,

n+1)=false

S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 → S(m-1, n)=false _ S(m,

n-1)=false

The first of the above two propositional formula

describes that if the numbered cell (m, n) and its

diagonally adjacent numbered cell with the coordinate

(m+1, n+1) are present, then the cells which has

coordinates (m+1, n) and (m, n+1) must be false or must

be black cell. The second of the above two propositional

formula describes that if the numbered cell (m, n) and its

diagonally adjacent numbered cell with the coordinate

(m-1, n-1) are present, then the cells which have

coordinates (m-1, n) and (m, n-1) must be false or must

be black cell.

If we find any two numbered white cells with one cell

interval and particularly if those numbered cells are in

the edge of the matrix, then we can have the following

propositional logics.

S(m, n) ≥ 1 _ S(m, n+2) ≥ 1 → S(m, n+1)=false {if(

m=(starting point of row) OR

m=(End

point of row))

S(m, n) ≥ 1 _ S(m+2, n) ≥ 1 → S(m+1, n)=false{if(

n=(starting point of column) OR

n=(End

point of column))

The first propositional formula of the above two

propositional formula describes that, if any numbered

cell at the starting or ending coordinate of the row with

any column coordinate has one cell interval with the

other numbered cell in the same region, then the middle

cell has to be black or false. This can be explained with

the following diagram,

Figure 14: Middle black cell with numbered cells on

left and right

The second propositional formula of the above two

propositional formula describes that, if any numbered

cell at the starting or ending coordinate of the column

with any row coordinate has one cell interval with the

other numbered cell in the same region, then the middle

cell has to be black or false. This can be explained with

the help of the following diagram.

Figure 15: Middle black cell with numbered cells on

Top and down

In order to avoid the isolated black cells we can extend

the black cells that are having only one possible cell to

extend in its surrounding region. For this kind of

situation we can use the following two propositional

formulas.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

12

S(m, n) ≥ 1 _ S(m, n+2) ≥ 1 → S(m, n+1)=false _

S(m+1,

n+1)=false {if(m=(starting point of row))

S(m, n) ≥ 1 _ S(m, n+2) ≥ 1 → S(m, n+1)=false _ S(m-

1,

n+1)=false {if(m=(End point of row))

S(m, n) ≥ 1 _ S(m+2, n) ≥ 1 → S(m+1, n)=false _

S(m+1,

n+1)=false {if(n=(starting point of column)

S(m, n) ≥ 1 _ S(m+2, n) ≥ 1 → S(m+1, n)=false

_S(m+1,

n-1)=false {if(n=(End point of column))

The first propositional formula of the above four

propositional formula describes that, if any numbered

cell at the starting coordinate of the row with any

column coordinate has one cell interval with the other

numbered cell in the same region, then the middle cell

has to be black and the cell below the middle cell has to

be white.

The second propositional formula of the above four

propositional formula describes that, if any numbered

cell at the ending coordinate of the row with any column

coordinate has one cell interval with the other numbered

cell in the same region, then the middle cell has to be

black and the cell above the middle cell has to be white.

This can be explained with the following diagram,

Figure 16: Extended middle black cell at the border

The third propositional formula of the above four

propositional formula describes that, if any numbered

cell at the starting coordinate of the column with any

row coordinate has one cell interval with the other

numbered cell, then the middle cell has to be black and

the next possible or right cell also has to be black.

Figure 17: Extended middle black cell at the border

The fourth propositional formula of the above four

propositional formula describes that, if any numbered

cell at the ending coordinate of the column with any

row coordinate has one cell interval with the other

numbered cell in the same region, then the middle cell

has to be black and the next possible or left cell also has

to be black. This can be explained with the help of the

following diagram, If the numbered cells with

coordinates (m, n) has neighbour numbered cells with

coordinates (m+1, n+1) and (m, n+2) then the cells with

coordinates (m, n+1) and (m-1, n+1) should be black.

And if the numbered cells with coordinates (m, n) has

numbered cells with coordinates (m-1, n-1) and (m, n-2)

then the cells with coordinates (m, n-1) and (m+1, n-1)

should be black. If the numbered cells with coordinates

(m, n) has neighbour numbered cells with coordinates

(m+1, n+1) and (m+2, n) then the cells with coordinates

(m+1, n) and (m+1, n-1) should be black. If the

numbered cells with coordinates (m, n) has neighbour

numbered cells with coordinates (m+1, n-1) and (m+2,

n) then the cells with coordinates (m+1, n) and (m+1,

n+1) should be black. This logic can be converted into

propositional logic as follows

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 _ S(m, n+2) ≥ 1 →

S(m, n+1)=false _ S (m+1, n+1)=false

S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 _ S(m, n-2) ≥ 1 → S(m,

n-1)=false _ S(m+1, n-1)=false

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

13

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 _ S(m+2, n) ≥ 1 →

S(m+1,

n)=false _ S(m+1, n-1)=false

S(m, n) ≥ 1 _ S(m+1, n-1) ≥ 1 _ S(m+2, n) ≥ 1 →

S(m+1,

n)=false _ S(m+1, n+1)=false

If the numbered cells with coordinates (m, n) has

neighbour numbered cell, with the coordinate (m-1, n+1)

and if (m-1, n+1) is in the starting point of the row with

any column, then the cell with coordinate (m-1, n-1)

should be black. If the numbered cells with coordinates

(m, n) has neighbour numbered cell, with the coordinate

(m-1, n-1) and if (m-1, n-1) is in the starting point of the

row with any column, then the cell with coordinate (m-

1, n+1) should be black. This logic can be converted into

propositional logic as follows,

S(m, n) ≥ 1 _ S(m-1, n+1) ≥ 1 → S(m-1, n-

1)=false S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 → S(m-1,

n+1)=false

If the numbered cells with coordinates (m, n) has

neighbour numbered cell, with the coordinate (m+1, n-1)

and if (m+1, n-1) is in the starting point of the column

with any row, then the cell with coordinate (m-1, n-1)

should be black. If the numbered cells with coordinates

(m, n) has neighbour numbered cell, with the coordinate

(m-1, n-1) and if (m-1, n-1) is in the starting point of the

column with any row, then the cell with coordinate

(m+1, n-1) should be black. This logic can be converted

into propositional logic as follows,

S(m, n) ≥ 1 _ S(m+1, n-1) ≥ 1 → S(m-1, n-1)=false

S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 → S(m+1, n-1)=false

If the numbered cells with coordinates (m, n) has

neighbour numbered cell, with the coordinate (m+1,

n+1) and if (m+1, n+1) is in the ending point of the

column with any row, then the cell with coordinate (m-

1, n+1) should be black. If the numbered cells with

coordinates (m, n) has neighbour numbered cell, with

the coordinate (m-1, n+1) and if (m-1, n+1) is in the

ending point of the column with any row, then the cell

with coordinate (m+1, n+1) should be black. This logic

can be converted into propositional logic as follows,

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 → S(m-1,

n+1)=false S(m, n) ≥ 1 _ S(m-1, n+1) ≥ 1 →

S(m+1, n+1)=false

If the numbered cells with coordinates (m, n) has

neighbour numbered cell, with the coordinate (m+1,

n+1) and if (m+1, n+1) is in the ending point of the row

with any column, then the cell with coordinate (m-1,

n+1) should be black. If the numbered cells with

coordinates (m, n) has neighbour numbered cell, with

the coordinate (m+1, n-1) and if (m+1, n-1) is in the

ending point of the row with any column, then the cell

with coordinate (m+1, n+1) should be black. This logic

can be converted into propositional logic as follows,

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 → S(m-1, n+1)=false

S(m, n) ≥ 1 _ S(m+1, n-1) ≥ 1 → S(m+1, n+1)=false

After detecting all the possible region cells for every

numbered cell in the Nurikabe grid, we take the

impossible region cells which does not included in any

of the logics above and we can determine that the

remaining cells are black. And moreover this impossible

region cells will not create 2x2 black pool. So we can

directly assign those cells as black cells in the CNF. If

that impossible region cells creates black pool then we

can determine that the game is impossible to solve and it

does not have the solution. This logic can be illustrated

with the following diagram,

Figure 18: Showing the Possible region of all the

numbered cells

In the above diagram, possible region cells for the

numbered cell 5 is indicated as blue, possible region

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

14

cells for the numbered cell 4 is indicated as red, possible

region cells for the numbered cell 2 is shown as yellow

and possible region cells for the numbered cell 1 is

shown as purple and the remaining cells does not comes

under any logic mentioned above. So the remaining cells

are marked as black.

B. SAT Solver

SAT is a short form of Satisfiability. Boolean

Satisfiability Problems can be solved with SAT solver

where we can solve by converting the problems into

SAT instances. Nurikabe is a NP-complete problem [4].

NP is known Non Deterministic polynomial time. That

is it can provide near optimal solution within polynomial

time. It also tells that the NP complete problem

will take more time than expected for the big puzzles.

The SAT solver can process big number of SAT

instances. But unfortunately no tool is good enough to

solve all the SAT instances. Still researches are going on

to find the more accurate SAT solver tool. The SAT

solver has vast applications area such as decision

making, artificial intelligence, circuit design and

automatic theorem proving and so on. SAT4j library file

for java can be downloaded from the net [9]. With this

library file it is possible to run the SAT4j as a stand-

alone SAT solver. Methods to run the SAT4j as a stand-

alone SAT solver is described in the documentation of

the SAT4j [7][8]. After saving the above text in

sample.cnf file, the following steps can be followed to

run the CNF file using the SAT4j library in the

command prompt.

java -jar org.sat4j.core.jar sample.cnf

After entering the command given above, following

results will be achieved in command prompt.

IV. CHALLENGES

Creating the tool to solve the Nurikabe puzzle involves

many challenges. In the past creating logics for the

functionality called “check” posed a challenge in

creating the appropriate logic to check the correctness of

the solution. In the remaining development process the

challenges will involve understanding how to encode

puzzle logic formula into SAT solver format and

V. CONCLUSION

Nurikabe puzzle project is developed in NetBeans with java platform

and SAT solver library is used to get the solution as well as to

generate new Nurikabe puzzles. It also provides the functionalities

like “Check” which can be used to check the correctness in the

solution provided by the user. And “Solve” is the big functionality in

this project which is used to solve the predefined set of Nurikabe

puzzles. And “Generate new puzzle” functionality will generate new

puzzles with random numbers. And to efficiency of the whole project

followed.

VI. REFERENCES

[1] http://www.nikoli.com/en/puzzles/nurik abe/

[2] http://www.satlive.org/

[3] Daniel Le Berre: From SAT to SAT4J

[4] Markus Holzer, Andreas Klein and Martin Kutrib:

On The NP-Completeness of The Nurikabe Pencil

Puzzle and Variants Thereof

[5] http://www.infosun.fim.uni-

passau.de/br/lehrstuhl/Kurse/ Proseminar

ss01/graph_traversals.pdf

[6] http://www.dwheeler.com/essays/minisat-user-

guide.html

[7] http://www.sat4j.org/howto.php

[8] Getting started with SAT4J by SAT4j community

[9] http://forge.ow2.org/project/showfiles.p

hp?group_id=228

[10] http://www.daniweb.com/software-development/cpp

/threads/351065

[11] http://stackoverflow.com/questions/5224877/java-

generate-random-range-of-specific-numbers-

without-duplication-of-those-num

Glossary

SAT – Satisfiability

CNF- Conjunctive Normal Form GUI -

Graphical User Interface DFS - Depth

First Search

IDE – Integrated Development Environment JDK-

Java Development Kit

http://www.infosun.fim.uni-passau.de/br/lehrstuhl/Kurse/
http://www.infosun.fim.uni-passau.de/br/lehrstuhl/Kurse/
http://www.daniweb.com/software-development/cpp

