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ABSTRACT 
 

Nurikabe is logical puzzle game. Nurikabe puzzle normally has „m‟ number of rows and „n‟ number of columns. 

Even though it is a logical puzzle game, one cannot solve all the puzzles with pure set of logics. Because Nurikabe 

puzzle is a NP-complete game. Hence some assumptions must be made in order to solve the given puzzle. In this 

project in order to make this kind of assumptions with set of logics, SAT solver is used. SAT solver is an efficient 

tool to make the decisions with binary logics. SAT solver will accept only CNF format. So the puzzle rules and 

solving logics are converted into CNF format and given to SAT solver.  Results from the SAT solver are checked 

with the rules and if the result satisfies the rules, then it is determined that the result as an appropriate solution for 

the given puzzle. And new Nurikabe puzzles also generated within certain limit in this project. SAT solver is used to 

generate new puzzles in this project.  

Keywords: NP-complete, Conjunctive Normal Form, T Veerarajan, Nurikabe puzzles 

I. INTRODUCTION 

 

Nurikabe is a binary determination puzzle game, 

published by Nikoli. Nurikabe consists of M*N grid that 

is it has m number of rows and n number of columns. 

Nurikabe is a Japanese word which means that invisible 

wall that delays the path. Users have to follow set of 

rules to find the hidden wall. To solve the puzzles 

automatically, SAT solver tool will be used. Sample 

Nurikabe games are available online [1]. 

 

More logics and strategies have to be followed in order 

to computerize the puzzle game. The rules to play the 

Nurikabe puzzle is described as follows, 

 

 Cells are considered to be connected only if it is 

connected either vertically or horizontally.  

 Each numbered white cells should have the 

same number of white cells around it.  

 All the black cells should be connected and the 

grid should not have any 2x2 black pools. 

 

A. Motivation  

Puzzle games are getting more popular day by day. 

While implementing the puzzle game in software it 

requires more logics and strategies to obtain the solution 

and it can be helpful to increase the ability to create new 

logics for any given problem. SAT solver is a tool which 

is popular in solving satisfiability problems [3]. SAT 

solver tools are open-source, available under free license 

and it has vast implementations. SAT solver is a 

powerful tool in decision making, software verification 

and it is used in artificial intelligence. Instances for SAT 

solvers are miniSAT, SAT4j, GRASP, PicoSAT, 

HyperSAT, RSAT and so on. SAT solvers are available 

for C, C++, JAVA, C# platforms and all SAT solvers are 

available online for free downloads [2]. And it can be 

implemented with Formal Languages such as Z- 

Language. SAT solvers are flexible and it can be 

modified. 

 

B. Aim 

The aim of the project is to computerize the Nurikabe 

puzzle and to implement the automatic solving 

functionality and to implement the generating new 

puzzles functionality. 

 

C. Objective 

The objective of the project is to create a tool to solve 

Nurikabe puzzle which is played in M*NM*N grid. By 

following the rules, M*Nm*n matrix cells has to be 
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filled with black and white colours according to the 

given numbers in the puzzle game. White cells are 

known as path or Islands and connected black cells are 

known as walls or streams. Initially wall is invisible and 

after solving the puzzle with the rules, connected wall 

will be revealed. Puzzle matrix will be converted into 

SAT instances and it will be given to the SAT solver. 

SAT solver will solve SAT instances with the help of 

puzzle logics given to it. And outcome of the SAT 

solver will be displayed as a result. Firstly Graphical 

User Interface (GUI) has to be created to display the 

puzzle as well as to play the puzzle. Secondly puzzle 

logic for Nurikabe puzzle game should be created and it 

should be implemented with the SAT solver. Thirdly, 

checking for the user input and verifying the solution 

given by the user has to be done and finally solving the 

entire puzzle automatically and showing the result to the 

user with the help of Graphical user interface. 

 

 
Figure 1 : Unsolved Nurikabe Puzzle 

 

 
Figure 2 : Solved Nurikabe Puzzle 

 

D. Literature Review 

1.  Ines Lynce, Joel Ouaknine Sudoku as a SAT 

 

Problem 

 

This paper holds the vital clue for how the puzzle logic 

can be converted to the propositional logic. Also we can 

understand how the CNF (Conjunctive Normal Form) 

can be generated out of the propositional logics and 

encoding techniques for the SAT solver. 

 

2. Daniel Le Berre: From SAT to SAT4J 

 

This paper describes the uses of SAT solvers and its 

advantages and which format of the input is needed for 

SAT4J. It describes about how to derive the CNF from 

the Propositional formula. And it tells how the SAT4J 

can be integrated with the Java platform. From this 

paper we can understand efficiency of the SAT solver. 

This paper is used to understand about the basics of SAT 

solvers and CNF formats. 

 

3. T Veerarajan: Discrete mathematics (Chapter 1: 

Mathematical logic) 

 

First chapter of this book is used to understand the 

Normal forms and its principals, conversion of one form 

to the other (DNF to CNF), Laws of Algebra of 

propositions which includes De-Morgan‟s Law. And it 

provides many examples for all those things mentioned 

above. 

 

II. METHODS AND MATERIAL 

1.  Technical specification 

 

The Nurikabe solver is developed with: 

 NetBeans IDE 7.0 

 JAVA - jdk 1.6 

 SAT solver – SAT4J 

 

A. NetBeans IDE 7.0 

 

NetBeans is an open source IDE which will support 

many languages like java, C, C++, PHP and so on. In 

this project java swing technologies are used which can 

support JButton, JFrame, JMenu, JMenuBar etc. More 

than that Java swing is very simple to implement 

compared to the Java applets. But NetBeans IDE needs 

Java Development Kit to run the java projects. For this 

project JDK 1.6 is used. Both NetBeans and JDK is 

available for free of cost. 

 

B. Project Analysis and Design 

Graphical User Interface is designed to show the 

Nurikabe puzzle to the user. Clear understanding of the 

Nurikabe puzzle rules aided the Graphical User Interface 
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design in a significant manner. GUI is developed using 

the Net Beans IDE 7.0, jdk 1.6 and SAT4j library. 

SAT4j has many kinds of library files. In this project, 

core library file of the SAT4j is used. This core library 

file is easy to implement any we can easily work with its 

functionalities. All kind of implementation methods are 

available in the SAT4j documentation [8]. Predefined 

puzzle questions are stored in separate text file. Inside 

that text file every data is given such as the row size and 

column size and followed by the numbers to display in 

the grid. To represent the empty cell in any coordinate in 

the puzzle grid we should enter the number „0‟ in the 

appropriate coordinate of the question text-file. Example 

for this text file is shown in the following diagram, 

 

 
Figure 3 : Text file which shows format of the puzzle 

question 

While loading the new game, number of rows and 

number of columns will be obtained to define the size of 

the grid and to define the number of rows and columns 

in the grid. All the functionalities such as “Open new 

game”, “Check”, “Solve”, “Generate new game” and 

“Exit” are added to the “Options” menu and “Rules” 

functionality is added to the “Help” menu. 

 

The functionality “Open new game” will go to the “List 

of games” folder as per the address given to it. After 

locating the “List of games” folder, this functionality 

will start to count the number of files available inside 

that folder. That number of files is used as a maximum 

limit. If user clicks the “Open new game” functionality 

for the first time then first file inside the “List of games” 

folder will be selected first. If the user clicks the “Open 

new game” functionality for the n
th
 time, then n

th
 file in 

the “List of games” folder will be selected. If number of 

clicks exceeds the maximum limit of the count of 

number of files available inside that “List of games” 

folder, then the number of clicks is assigned to zero. So 

when the number of clicks exceeds the maximum limit 

of the number of files available, then first file from that 

“List of games” folder will be selected next. This 

functionality will count the number of files available in 

the “List of games” folder each time the user clicks this 

functionality. So it is possible to introduce the new game 

file during the run time of this project. If any of the 

game file is not having sufficient numbers or not created 

in the specific format, then it will not load the game and 

it will show the message box to the user, which holds the 

message like “Sorry..!! Could not load this game”. The 

image showing this message box is given below, 

 

 
Figure 4 : Message box showing the inconvenience in 

loading the game 

 

If the selected file is in the correct format then the 

selected game will be displayed in the main window 

grid. Initially all the cells in the grid will be grey in 

colour except the numbered cells. 

 

All the numbered cells will be white in colour. Grey 

coloured cells are unknown cells. If the grey cell is 

clicked once it will change its colour to white. If the 

white cells are clicked once, then it will change to black 

in colour and if any black cell is clicked then it will 

change to white in colour. Any colour change will not 

happen to the numbered cells and it will be white in 

colour for ever. The “open new game” functionality is 

displayed in the image below. 

 
Figure 5: GUI showing the sub menus of the “Options” 

menu 
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Figure 6 : Sample Nurikabe Puzzle game 

 

The “Check” functionality will check for the correctness 

of the user solution. In this check functionality four 

check points are implemented. First check point will 

check for the number of black cells and white cells. If 

we subtract the sum of the numbers from all the 

numbered white cells from the total number of cells then 

we can find the number of actual black cells. 

 

Number of Actual black cells = Total number of cells – 

Sum of numbers in numbered white cells. 

 

If the count of black cells is same as the actual black 

cells which we got from the above formula then first 

check point will return true. If not then it will return 

false. 

 

Second check point will look for the 2x2 black pools in 

the grid area. In the M*N grid it is enough to run the 

loop till (m-1)x(n-1). Because if we start form the first 

cell which has the coordinate of (m=1, n=1), then this 

check point will look for its neighbours colour which are 

having the coordinates (m=1, n=2), (m=2, n=1) and 

(m=2, n=2). By the moment the loop reaches the 

coordinate (m-1, n-1), this check point would have 

processed all the cells in the grid. If there are no 2x2 

black pools formed then the second check point will 

return true. If not it will return false. 

 

Third check point is developed to check for the 

continuity of the black cells and it will find the isolated 

black cells also. For the convenient the solution 

provided by the user will be converted to the matrix 

form which will have only 0s and 1s. 0s will represent 

the white cells and 1s will represent the black cells. To 

find the continuity of the black cells DFS (Depth first 

search) algorithm is used. DFS is very efficient in 

finding the depth of the given tree. And DFS is very 

efficient in finding the path in Maze puzzle games 

[5][10]. This Depth first algorithm is configured to 

traverse along the black cells and to count the number of 

black cells that are present in its way. And also it is 

configured to look for the isolated black cells in the grid. 

To traverse along the black cells recursive form of the 

DFS is used. So it will call itself again and again till it 

reaches the end. This third check point will return true if 

it is not finding any isolated black cells and the counting 

of the black cells is same as the actual black cells. 

Otherwise it will return false. Actual number of black 

cells is the difference between the total size of the grid 

to the counting of the all the numbers in the numbered 

cells available in the grid. 

 

Coordinates to the algorithm is the first occurrence of 

the black cell in the whole grid. All the cells inside grid 

are converted into 0s and 1s and it is stored in the array. 

Number 0 represents white cells and Number 1 

represents black cells in the grid. This algorithm can be 

explained with the following images, 

 

 
Figure 7 : Sample Nurikabe Puzzle game with partial 

solution 

 

First the above grid is converted to the matrix form as 

mentioned above. The matrix for the above grid is 

shown below. 

 

1 1 0 

1 0 1 

0 1 1 

0 0 1 

 

The first occurrence of the black cell is on the first cell 

which has the coordinate (m=1, n=1). This stored matrix 

and the first black cell coordinate are given to the 

recursive DFS. This recursive DFS will check for the 
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coordinates firstly in the segment 1. The coordinates are 

safe to process, because they are inside the matrix. And 

it will check for the acknowledgements whether this is 

processed before or not in the segment 2. In this case it 

was not acknowledged before. So it will go to the next 

step of the process which is segment 3. Segment 3 is to 

check whether the count of the number of black cells 

reached the number of actual black cells or not. In this 

case it has not reached yet. So it will go to the next step 

which is segment 4. Here it will check whether the cell 

which is in process, is black or not. If it is black then it 

will allow going to the next step. If not, then it will 

return false to the function. In this case it is a black cell, 

so it will not return false and it will go to the next step. 

In the segment 5, if the current coordinates has black 

cell then it will acknowledge that the current cell is 

processed and it will increase its variable named 

„pathcount‟ by 1 and it will check for its neighbours. 

Here the function is called with the same set of matrix 

with the neighbour coordinates. In this example only 

two cells are connected to the cell with the (m=1, n=1). 

So the „pathcount‟ value will be 3. Because, other black 

cells have no connection either vertically or horizontally 

with the first black cell. If any of the black cells has no 

neighbour, then it will be marked as the isolated cell. In 

this example, expected number of connected black cells 

(path-count) is 8 which is the count of the actual black 

cells. But only 3 connected black cells are found from 

the first cell. So it does not satisfy the rules. Hence 

check3 will be assigned as false in this example. If we 

consider the following diagram, 

 

 

 
 

Figure 8 : Sample Nurikabe Puzzle game with full 

solution 

 

This example diagram satisfies the check point 3. 

Because in the above example, number of cells is 12. 

And the actual number of black cells is 8 and the count 

of the current black cells is also 8. So this check point 3 

will return true in this case. 

 

Fourth check point is developed to check for the number 

of white cells connected to the numbered white cells. 

This fourth check point is also based on DFS algorithm 

[5][10]. DFS algorithm is configured to find the 

numbered white cells and the connected white cells to it. 

It is configured to traverse only along the white cells. 

This check point will return true if the numbered white 

cells in the grid has the same number of white cells 

around it. If it detects any numbered white cells that 

have more number of white cells around it or less 

number of white cells around it, then it will return false. 

 

If all these four check points returns true then the 

solution is correct and it has no error in it. And it will 

show the confirmation message of the correctness. If any 

of the checkpoint fails and returns false then it will show 

the failure notification in the message dialogue and the 

message dialogue is shown below. 

 

 
 

Figure 9 : Nurikabe Puzzle which is designed not to 

obey the rules 
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Figure 10 : Message dialogue which shows failure 

notification of the given puzzle 

 

To check the accuracy of the solutions during each 

iteration, DFS algorithm is used. Here also DFS is 

modified in two ways as same as the checking 

functionality. One is to find the number of connected 

black cells and the other DFS is modified to look for the 

number of white cells around the numbered white cells. 

To increase the efficiency of the checking process some 

tactics are followed. When the SAT solver returns the 

“satisfiable” answer, accuracy of that solution has to be 

checked. Before doing the checking for the number of 

connected white cells with modified-DFS algorithm, 

accuracy in the actual number of white cells with the 

current number of white is checked. To do this process, 

while extracting the answer given by the SAT solver to 

do the appending operation, number of white cells 

available in that solution is calculated. If the calculated 

number of white cells is same as the sum of numbered 

cells available in the grid, then it will allow the solution 

for the further checking. If not it will not go further and 

it give the inverted solution to append to get the next 

possible solution. If the actual number of white cells is 

same as the current number of white cells, then the 

checking for the number of connected black cells will be 

done. If checking for those black cells returns false at 

any moment, then it will terminate the current process 

and the current solution will be inverted and appended to 

the CNF file. If it returns true, then the checking for the 

number of white cells around the numbered white cells 

will be done. If any of the numbered cells has low or 

high number of white cells around it compared to the 

number inside the numbered cell, then it will return false 

and it will allow the inverting and appending process of 

the current solution to the CNF file. If all of the above 

checking returns true, then the current possible solution 

is the exact solution which obeys all of the Nurikabe 

rules. And it will show the message dialogue which has 

the message like “Congratulations..!! You have finished 

the game..!!”. The diagram showing this message 

dialogue is as follows. 

 

The functionality called “Generate New Game” is used 

to generate new games which are of 5x5 in size. To 

generate the new game, one important rule is taken 

firstly. That is no 2x2 pool formation inside the grid. 

This rule to avoid the 2x2 pool inside the grid is written 

inside the CNF file named “gen.cnf”. After that whole 

“gen.cnf” file will be replaced to the “generate.cnf” file 

in correct format. Random number is generated within 

the limit. Many methods are available to generate the 

random numbers within the limit [11]. In this project, 

random number is generated which is within the range 

from 1 to 100. Till that generated number loop will run 

and inside that “generate.cnf” will be red and its solution 

will be updated to the “gen.cnf” and this process will 

continue till the loop reaches the generated number. 

After this process all the black cells inside the grid will 

be converted into number 1 and white cells inside it will 

be converted into number 0 and it will be stored in the 

matrix. This stored matrix and the coordinated of the 

first black cells in the grid is given to the modified-DFS 

algorithm named „pathtracking_gen‟. This 

„pathtracking_gen‟ algorithm will traverse through the 

matrix as long as the first occurrence of the black cell in 

the matrix has neighbours either vertically or 

horizontally and number of continuous black cells will 

be stored. Here the actual number of black cell is the 

total number of black cells available inside the matrix. If 

the number of actual black cells is same as the number 

of continuous black cells inside the matrix, then 

condition is satisfied. So from this algorithm we can get 

whether all black cells in the matrix are continuous or 

not. If this algorithm returns true, that is if the number of 

black cells in the matrix are continuous, then number of 

connected white cells in the matrix will be calculated. 

To find the number of continuous white cells, stored 

matrix which is mentioned above and first occurrence of 

the white cell coordinates are given to the modified-DFS 

algorithm named as „check_boundedness_gen‟ which is 

specifically designed to traverse through the white cells. 

While traversing along the continuous white cells in the 

matrix, this algorithm will mark those continuous white 

cells as processed. At the end of the process, number of 

continuous white cells with the first occurrence of the 

number 0 in the „matrix‟, is stored in the „A-matrix‟ in 

the first occurrence of the number 0 position of the 
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„matrix‟. This can be explained with the following 

example. 

 

„martix‟ 

0 0 0 0 1 

1 1 1 1 1 

1 0 0 0 1 

1 0 0 1 1 

1 1 1 1 0 

 

In this example „pathtracking_gen‟ will return true. 

Because number of black cells in the above matrix is 15. 

And number of continuous black cells in the region also 

15. So it will return true value. So it will go for the 

„check_boundedness_gen‟ algorithm as a next step. 

 

Here first occurrence of the white cell (Number 0) is in 

the coordinates (m=1,n=1). After calling 

„check_boundedness_gen‟ algorithm we will get the „A-

matrix‟ as follows, 

 

„A-matrix‟ 4 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 

 

And the „check_boundedness_gen‟ algorithm will start 

from the second occurrence of the „matrix‟ which has 

the coordinates (m=1, n=2). But the count of the white 

cells will be 0 this time. Because this second occurrence 

of white cell with coordinates (m=1. n=2) is already 

processed. So the number of continuous white cells will 

be 0. After the completion of this 

„check_boundedness_gen‟ for the entire matrix, we will 

get the „A-matrix‟ as follows, 

 

„A-matrix‟ 4 0 0 0 

0 0 0 0 0 0 0 5 0 0 

0 0 0 0 0 0 0 0 0 0 

1 

 

This „A-matrix‟ is used to display the questions in the 

grid. And the „matrix‟ will be used to check for the 

user‟s solution as well as to display the correct solution, 

when the user is calling „solve‟ function. 

 

On the 1
st
 iteration: 65 On the 

2
st
 iteration: 95 On the 3

st
 

iteration: 77 On the 4
st
 

iteration: 35 On the 5
st
 

iteration: 42 On the 6
st
 

iteration: 78 

 
Figure 11: New puzzle generated by the “Generate 

New Puzzle” functionality 

 

In this example, the first 5 random numbers are failed to 

provide the continuous black cells without any isolated 

black cells. And in the 6
th
 iteration the random number 

78 is generated and it has provided the continuous black 

cells. 

 

The functionality called “exit” is to close the Nurikabe 

puzzle game tool. 

 

And the help functionality is implemented to display the 

message box which will display the set of rules to be 

followed in order to play the Nurikabe puzzle game. 

This message box is showed in the following picture. 

 
Figure  12: Message dialogue shows the rules 

 

III. RESULTS AND DISCUSSION 

 

Project Development 

 

A. Logic formula 

 

Propositional logic formula for Nurikabe solver can be 

derived by combining the expressions like Conjunction, 

Disjunction, negation, and, equals. After finding the 

complete set of logics to solve the puzzle, we have to 

convert those logics into the propositional logic formula. 

A set of SAT instances which is built from the 

propositional logic has to be given as the input to the 

SAT solver. Then the SAT solver will determine 
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whether the given problem is satisfiable or not. 

 

For the formation of propositional logic formula, the 

following symbols will be used commonly. 

 

→ Then 

⌐ Negation 

AND (or) Conjunction  

 OR (or) Disjunction  

↔ Same as  

 

Deep understanding of the game has provided many 

clues to solve the given game with SAT solver. SAT 

solver will accept only Boolean forms. So eventually we 

are converting entire game and its solving steps into the 

Boolean format which consists of only true and false. 

Nurikabe has only Black and White cells in its solution 

and those white and black cells have to be filled with 

logic. Some assumptions are made to solve the game. 

The first assumption is TRUE indicates white cell and 

FALSE indicates black cell. And the Second assumption 

is if the cell has number in it then that cell must be 

white. 

 

Sample logic formula is given below, 

S (m, n)=1 → S(m-1, n)=false _ S(m+1, n)=false _ S(m, 

n+1)=false _ S(m, n-1) =false 

This formula represents the simple solving logic in the 

Nurikabe puzzle game. It means that if the cell which 

has the coordinates of row=4 and column=4 has the 

number 1 and it is white in colour, then the cells around 

it with coordinates (3,4), (5,4), (4,5) and (4,3) will be 

converted into black. The formula given above is in 

DNF (Disjunctive normal form) format. SAT solver will 

accept only CNF format. So the formula can be written 

as follows, 

 

S(m, n)=1 → S(m-1, n)=false 

S(m, n)=1 → S(m+1, n)=false 

S(m, n)=1 → S(m, n+1)=false 

S(m, n)=1 → S(m, n-1) =false 

 

 

If number 2 is found in any cell in the game then the 

logic to solve that will be as follows, 

 

S(m, n)=2 → S(m, n)=true _ (S(m-1, n)=true 

S(m+1, n)= true _ S(m, n+1)= true _ S(m, n-1) = true) 

 

This formula describes that if the number 2 is found 

in the 2
nd

 row of the 2
nd

 column then that cell must be 

true and any one of the cells around it (1
st
 row of the 

2
nd

 column OR 3
rd

 row of the 2
nd

 column OR 2
nd

 row 

of the 1
st
 column OR 2

nd 
row of the 3

rd
 column) must 

be true. So in the CNF format it can be written as 

follows, 

 

S22=2 → S22=true 

S22=2 → S12=true _ S32=true _ S21=true _ 

S23=true 

 

This S22=2 → S12=true _ S32=true _ S21=true _ 

S23=true condition will give at-least 1 true variable at 

a time. So it means that it can give more than 1 true 

variable at a time. Other combinations except 1 true 

variable at a time are as follows, 

 

Total Number of Number of  

number of True combinations  

variables variables at available  

(X ) 

a time 

( C =X! / ( X- 

 

  

 ( T ) T)! T! )  

4 2 6  

4 3 4  

4 4 1  

 

So total remaining combinations are (6+4+1) = 11 

 

These combinations are unnecessary and it increases 

the number of iteration to find the exact solution. So 

we have to avoid those combinations. To avoid those 

combinations, only way is to get those combinations 

and if we invert those combinations and if we append 

it to the CNF file, we can get the results, which are all 

having only 1 true variables at a time. So the resulting 

combination will be only 4 combinations in which 

only one true variable available at time. 

 

 

If we consider the following condition, B _ 

C _ D 

 

It clearly states that at least one of B or C or D must 

be true if the condition is satisfied. We can 

understand this concept by the following truth table 
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where T= True and F= False, 

 

B C D B _ Satisfiability 

   C _  

   D  

T T T T Satisfied 

T T F T Satisfied 

T F T T Satisfied 

T F F T Satisfied 

F T T T Satisfied 

F T F T Satisfied 

F F T T Satisfied 

F F F F Unsatisfied 

 

If we consider three variables B, C and D with the 

following combination, 

 

(B _ C) _ (C _ D) _ (B _ D) 

 

It will give at least 2 true variables at a time. In the 

above combination 1 variable is skipped at a time. In 

order to attain at least 2 true variables at a time from 

three variables, three different combinations are needed 

with 1 variable skipped in each combination. 

 

If we consider „X‟ variables with 2 variables skipped at 

a time in its combination, then it will give at least 3 

true variables at a time. 

If we consider „X‟ number of variables with „S‟ number 

of variables skipped at a time then the combination will 

give at least „S+1‟ true variables at a time. 

 

The following table describes the relationship between 

skipped number of variables and minimum number of 

true variables. 

 

Number Skipped Minimu Maximu  

of number m m  

Variable of number number  

s variable of true of true  

( X ) 

s values values  

    

 ( S ) ( Min = ( Max = X  

  S+1 ) )  

10 1 2 10  

10 2 3 10  

10 3 4 10  

10 4 5 10  

10 5 6 10  

If number 3 is found in the coordinate (m, n) then the 

possible region cells will be, 

 

S(m-1, n), S(m-2, n), S(m+1, n), S(m+2, n), S(m, n+1), 

S(m, n+2), S(m, n-2), S(m, n-1), S(m+1, n-1), S(m-1, 

n+1), S(m-1, n-1), S(m+1, n+1) 

 

We know that numbered cell must be white. To 

complete its region, 2 more cells are needed. So we 

have to skip 1 variable at a time in its possible region 

cells to obtain the correct combination. 

 

Therefore if the number „N‟ is found in the Nurikabe 

grid then, N-1 cells around it must be true and those 

cells must be connected either horizontally or 

vertically. The number of variables to skip will be N-2 

for the formation of its possible region. The following 

table describes the relationship between the number 

and the number of variables to skip per iteration and 

the number of true cells. 

 

Number in the 
numbered 

white cell ( N ) 

Number of 
connected true 

cells to the 
Numbered  cell 

( N-1 ) 

Number of 
variables toskip 

periteration( N-2 )  

3 2 1  

4 3 2  

5 4 3  

6 5 4  

 

From the complete understanding of the game, it is 

possible to determine the possible region of cells. After 

finding all the set of cells from the possible region, it 

will be simple to determine the cells from the 

impossible region. To understand this concept the 

following diagram can be used. 

 

 

 

 

 

 

Figure 13: Showing the Possible region of the 

numbered cell 
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In the above diagram, green coloured cells are the 

possible region cells for the cell with number 4. 

Generally the maximum number of possible region 

cells for any numbered cells will differ from „N-1‟ to 

„N
2
 + (N-1)

2
 – 1‟ where N is the number in the 

numbered cell. Examples for this can be seen in the 

following table, 

 

Number 
( N ) 

Minimum no. of 
possible region 
cells ( N-1 ) 

Maximum no. of 
possible region cells 
( N2 + (N-1)2 – 1) 

2 1 4 

3 2 12 

4 3 24 

5 4 40 

6 5 60 

 

An algorithm is developed to determine the possible 

region cells for the numbered cells. That algorithm is 

shown below, after finding all the possible region cells, 

there is a need to create all the possible combinations 

with the appropriate number of variables skipped. To 

create the combination of the possible area cells, the 

following algorithm is developed. 

 

Deep understanding and analysis of the relationship 

between number of variables and the number of 

variables to be skipped reveals some structures. This 

analysis is explained with the help of following table, 

 

Number of 

possible cells for 

any numbered 

cell ( X ) 

Number of 

variables to 

skip per 

iteration ( S ) 

Number of 
combinations 
achieved ( C =X! / 
( X-S)! S! )  

6 1 6  

6 2 15  

6 3 20  

6 4 15  

6 5 6  

 

In the above table X! is known as Factorial of X. For 

example if X = 5 and S = 2, then the total number of 

possible combinations will be, 

 

C = ( 5! / ( 5 - 2 )! 2! ) = ( 5*4*3*2*1) / 

(3*2*1)*(2*1) = 10 

 

So in this example total combinations will be 10. 

 

For every numbered cell, its entire possible region is 

collected and inverted and given to the SAT solver to 

avoid the all-true condition. Because the formulas and 

combinations will give at-least conditions only. Example 

explained with the possible area cells of number 3 is as 

follows, 

 

S(m-1, n) _-S(m-2, n) _- S(m+1, n) _- S(m+2, n) _- 

S(m, n+1) _- S(m, n+2) _- S(m, n-2) _- S(m, n-1) _- 

S(m+1, n-1)- S(m-1, n+1) _- S(m-1, n-1) _- S(m+1, 

n+1) 

 

At the same time rules also have to be implemented to 

attain a solution for the given game. It is very hard to 

implement the rules like boundedness of the numbered 

white cells and the continuity of the black cells. But it is 

simple to implement the rule like 2x2 pools is easy in 

the CNF. Propositional logic to avoid the 2x2 pool of 

black cells will be as follows, 

 

S(m, n) _ S(m+1, n) _ S(m, n+1) _ S(m+1, n+1) 

 

The above formula clearly states that at least one of the 

cells in the four cells must be true. But with this 

propositional formula number of solutions made by the 

SAT solver will be very high. From that list of solutions 

we can find the unique answer for the given game. It is 

not efficient and it will take more time to get the proper 

solution from the list of solutions. So we tend to create 

some more propositional tactics to minimize the list of 

solutions as well as to reduce the time to search for an 

appropriate solution from the list. 

 

In the Nurikabe matrix if we find any numbered cell 

then it must be white. So we can convert this logic into 

propositional logic as follows, 

 

S(m, n) ≥ 1 → S(m, n) =true 

 

And In the Nurikabe matrix if we find any numbered 

cells that have more than number 2 in it, then one of the 

cells around it either horizontally or vertically will 

definitely be true. So the propositional logic for that will 

be as follows, 

 

S(m, n) ≥ 3 → S(m-1, n)=true _ S(m+1, n)= true _ 

S(m, n+1)= true _ S (m, n-1) = true 

This propositional logic is similar to the propositional 

logic for the number 2. 
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In the Nurikabe grid if we find any two numbered cells 

that are diagonally adjacent, then the propositional 

formula will be as follows, 

 

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 → S(m+1, n)=false _ 

S(m, 

n+1)=false 

 

S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 → S(m-1, n)=false _ S(m, 

n-1)=false 

 

The first of the above two propositional formula 

describes that if the numbered cell (m, n) and its 

diagonally adjacent numbered cell with the coordinate 

(m+1, n+1) are present, then the cells which has 

coordinates (m+1, n) and (m, n+1) must be false or must 

be black cell. The second of the above two propositional 

formula describes that if the numbered cell (m, n) and its 

diagonally adjacent numbered cell with the coordinate 

(m-1, n-1) are present, then the cells which have 

coordinates (m-1, n) and (m, n-1) must be false or must 

be black cell. 

 

If we find any two numbered white cells with one cell 

interval and particularly if those numbered cells are in 

the edge of the matrix, then we can have the following 

propositional logics. 

 

 

S(m, n) ≥ 1 _ S(m, n+2) ≥ 1 → S(m, n+1)=false {if( 

 

m=(starting point of row) OR 

 

m=(End 

point of row)  ) 

 

 

S(m, n) ≥ 1 _ S(m+2, n) ≥ 1 → S(m+1, n)=false{if( 

 

n=(starting point of column) OR 

 

n=(End 

point of column) ) 

 

The first propositional formula of the above two 

propositional formula describes that, if any numbered 

cell at the starting or ending coordinate of the row with 

any column coordinate has one cell interval with the 

other numbered cell in the same region, then the middle 

cell has to be black or false. This can be explained with 

the following diagram, 

 

 
Figure 14:  Middle black cell with numbered cells on 

left and right 

 

The second propositional formula of the above two 

propositional formula describes that, if any numbered 

cell at the starting or ending coordinate of the column 

with any row coordinate has one cell interval with the 

other numbered cell in the same region, then the middle 

cell has to be black or false. This can be explained with 

the help of the following diagram. 

 

 
Figure 15:  Middle black cell with numbered cells on 

Top and down 

 

 

In order to avoid the isolated black cells we can extend 

the black cells that are having only one possible cell to 

extend in its surrounding region. For this kind of 

situation we can use the following two propositional 

formulas. 
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S(m, n) ≥ 1 _ S(m, n+2) ≥ 1 → S(m, n+1)=false _ 

S(m+1, 

n+1)=false {if( m=(starting point of row) ) 

 

S(m, n) ≥ 1 _ S(m, n+2) ≥ 1 → S(m, n+1)=false _ S(m-

1, 

n+1)=false {if( m=(End point of row)  ) 

 

S(m, n) ≥ 1 _ S(m+2, n) ≥ 1 → S(m+1, n)=false _ 

S(m+1, 

n+1)=false {if( n=(starting point of column) 

 

S(m, n) ≥ 1 _ S(m+2, n) ≥ 1 → S(m+1, n)=false 

_S(m+1, 

n-1)=false {if( n=(End point of column) ) 

 

 

The first propositional formula of the above four 

propositional formula describes that, if any numbered 

cell at the starting coordinate of the row with any 

column coordinate has one cell interval with the other 

numbered cell in the same region, then the middle cell 

has to be black and the cell below the middle cell has to 

be white. 

 

The second propositional formula of the above four 

propositional formula describes that, if any numbered 

cell at the ending coordinate of the row with any column 

coordinate has one cell interval with the other numbered 

cell in the same region, then the middle cell has to be 

black and the cell above the middle cell has to be white. 

This can be explained with the following diagram, 

 
 

Figure 16: Extended middle black cell at the border 

 

The third propositional formula of the above four 

propositional formula describes that, if any numbered 

cell at the starting coordinate of the column with any 

row coordinate has one cell interval with the other 

numbered cell, then the middle cell has to be black and 

the next possible or right cell also has to be black. 

 

 
Figure 17:  Extended middle black cell at the border 

 

The fourth propositional formula of the above four 

propositional formula describes that, if any numbered 

cell at the ending coordinate of the column with any 

row coordinate has one cell interval with the other 

numbered cell in the same region, then the middle cell 

has to be black and the next possible or left cell also has 

to be black. This can be explained with the help of the 

following diagram, If the numbered cells with 

coordinates (m, n) has neighbour numbered cells with 

coordinates (m+1, n+1) and (m, n+2) then the cells with 

coordinates (m, n+1) and (m-1, n+1) should be black. 

And if the numbered cells with coordinates (m, n) has 

numbered cells with coordinates (m-1, n-1) and (m, n-2) 

then the cells with coordinates (m, n-1) and (m+1, n-1) 

should be black. If the numbered cells with coordinates 

(m, n) has neighbour numbered cells with coordinates 

(m+1, n+1) and (m+2, n) then the cells with coordinates 

(m+1, n) and (m+1, n-1) should be black. If the 

numbered cells with coordinates (m, n) has neighbour 

numbered cells with coordinates (m+1, n-1) and (m+2, 

n) then the cells with coordinates (m+1, n) and (m+1, 

n+1) should be black. This logic can be converted into 

propositional logic as follows 

 

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 _ S(m, n+2) ≥ 1 → 

S(m, n+1)=false _ S (m+1, n+1)=false 

 

S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 _ S(m, n-2) ≥ 1 → S(m, 

n-1)=false _ S(m+1, n-1)=false 
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S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 _ S(m+2, n) ≥ 1 → 

S(m+1, 

n)=false _ S(m+1, n-1)=false 

 

S(m, n) ≥ 1 _ S(m+1, n-1) ≥ 1 _ S(m+2, n) ≥ 1 → 

S(m+1, 

n)=false _ S(m+1, n+1)=false 

 

If the numbered cells with coordinates (m, n) has 

neighbour numbered cell, with the coordinate (m-1, n+1) 

and if (m-1, n+1) is in the starting point of the row with 

any column, then the cell with coordinate (m-1, n-1) 

should be black. If the numbered cells with coordinates 

(m, n) has neighbour numbered cell, with the coordinate 

(m-1, n-1) and if (m-1, n-1) is in the starting point of the 

row with any column, then the cell with coordinate (m-

1, n+1) should be black. This logic can be converted into 

propositional logic as follows, 

 

S(m, n) ≥ 1 _ S(m-1, n+1) ≥ 1 → S(m-1, n-

1)=false S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 → S(m-1, 

n+1)=false 

 

If the numbered cells with coordinates (m, n) has 

neighbour numbered cell, with the coordinate (m+1, n-1) 

and if (m+1, n-1) is in the starting point of the column 

with any row, then the cell with coordinate (m-1, n-1) 

should be black. If the numbered cells with coordinates 

(m, n) has neighbour numbered cell, with the coordinate 

(m-1, n-1) and if (m-1, n-1) is in the starting point of the 

column with any row, then the cell with coordinate 

(m+1, n-1) should be black. This logic can be converted 

into propositional logic as follows, 

 

S(m, n) ≥ 1 _ S(m+1, n-1) ≥ 1 → S(m-1, n-1)=false 

S(m, n) ≥ 1 _ S(m-1, n-1) ≥ 1 → S(m+1, n-1)=false 

 

 

If the numbered cells with coordinates (m, n) has 

neighbour numbered cell, with the coordinate (m+1, 

n+1) and if (m+1, n+1) is in the ending point of the 

column with any row, then the cell with coordinate (m-

1, n+1) should be black. If the numbered cells with 

coordinates (m, n) has neighbour numbered cell, with 

the coordinate (m-1, n+1) and if (m-1, n+1) is in the 

ending point of the column with any row, then the cell 

with coordinate (m+1, n+1) should be black. This logic 

can be converted into propositional logic as follows, 

 

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 → S(m-1, 

n+1)=false S(m, n) ≥ 1 _ S(m-1, n+1) ≥ 1 → 

S(m+1, n+1)=false 

 

If the numbered cells with coordinates (m, n) has 

neighbour numbered cell, with the coordinate (m+1, 

n+1) and if (m+1, n+1) is in the ending point of the row 

with any column, then the cell with coordinate (m-1, 

n+1) should be black. If the numbered cells with 

coordinates (m, n) has neighbour numbered cell, with 

the coordinate (m+1, n-1) and if (m+1, n-1) is in the 

ending point of the row with any column, then the cell 

with coordinate (m+1, n+1) should be black. This logic 

can be converted into propositional logic as follows, 

 

S(m, n) ≥ 1 _ S(m+1, n+1) ≥ 1 → S(m-1, n+1)=false 

S(m, n) ≥ 1 _ S(m+1, n-1) ≥ 1 → S(m+1, n+1)=false 

 

After detecting all the possible region cells for every 

numbered cell in the Nurikabe grid, we take the 

impossible region cells which does not included in any 

of the logics above and we can determine that the 

remaining cells are black. And moreover this impossible 

region cells will not create 2x2 black pool. So we can 

directly assign those cells as black cells in the CNF. If 

that impossible region cells creates black pool then we 

can determine that the game is impossible to solve and it 

does not have the solution. This logic can be illustrated 

with the following diagram, 

 
 

Figure 18: Showing the Possible region of all the 

numbered cells 

 

In the above diagram, possible region cells for the 

numbered cell 5 is indicated as blue, possible region 
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cells for the numbered cell 4 is indicated as red, possible 

region cells for the numbered cell 2 is shown as yellow 

and possible region cells for the numbered cell 1 is 

shown as purple and the remaining cells does not comes 

under any logic mentioned above. So the remaining cells 

are marked as black. 

 

B. SAT Solver 

 

SAT is a short form of Satisfiability. Boolean 

Satisfiability Problems can be solved with SAT solver 

where we can solve by converting the problems into 

SAT instances. Nurikabe is a NP-complete problem [4]. 

NP is known Non Deterministic polynomial time. That 

is it can provide near optimal solution within polynomial 

time. It also tells that the NP complete problem 

 

will take more time than expected for the big puzzles. 

The SAT solver can process big number of SAT 

instances. But unfortunately no tool is good enough to 

solve all the SAT instances. Still researches are going on 

to find the more accurate SAT solver tool. The SAT 

solver has vast applications area such as decision 

making, artificial intelligence, circuit design and 

automatic theorem proving and so on. SAT4j library file 

for java can be downloaded from the net [9]. With this 

library file it is possible to run the SAT4j as a stand-

alone SAT solver. Methods to run the SAT4j as a stand-

alone SAT solver is described in the documentation of 

the SAT4j [7][8]. After saving the above text in 

sample.cnf file, the following steps can be followed to 

run the CNF file using the SAT4j library in the 

command prompt. 

 

java -jar org.sat4j.core.jar sample.cnf 

 

After entering the command given above, following 

results will be achieved in command prompt. 

 

IV. CHALLENGES 
 

Creating the tool to solve the Nurikabe puzzle involves 

many challenges. In the past creating logics for the 

functionality called “check” posed a challenge in 

creating the appropriate logic to check the correctness of 

the solution. In the remaining development process the 

challenges will involve understanding how to encode 

puzzle logic formula into SAT solver format and 

V. CONCLUSION 

 
Nurikabe puzzle project is developed in NetBeans with java platform 

and SAT solver library is used to get the solution as well as to 

generate new Nurikabe puzzles. It also provides the functionalities 

like “Check” which can be used to check the correctness in the 

solution provided by the user. And “Solve” is the big functionality in 

this project which is used to solve the predefined set of Nurikabe 

puzzles. And “Generate new puzzle” functionality will generate new 

puzzles with random numbers. And to efficiency of the whole project 

followed. 
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Glossary 

SAT – Satisfiability  

CNF- Conjunctive Normal Form GUI - 

Graphical User Interface DFS - Depth 

First Search  

IDE – Integrated Development Environment JDK- 

Java Development Kit 
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